COMBINATORICA

Bolyai Society - Springer-Verlag

Combinatorica **28** (3) (2008) 343–355 DOI: 10.1007/s00493-008-2205-4

THREE-DIMENSIONAL SETS WITH SMALL SUMSET

YONUTZ V. STANCHESCU

Received April 19, 2005 Revised December 20, 2005

We describe the structure of three dimensional sets of lattice points, having a small doubling property. Let \mathcal{K} be a finite subset of \mathbb{Z}^3 such that $\dim \mathcal{K} = 3$. If $|\mathcal{K} + \mathcal{K}| < \frac{13}{3} |\mathcal{K}| - \frac{25}{3}$ and $|\mathcal{K}| > 12^3$, then \mathcal{K} lies on three parallel lines. Moreover, for every three dimensional finite set $\mathcal{K} \subseteq \mathbb{Z}^3$ that lies on three parallel lines, if $|\mathcal{K} + \mathcal{K}| < 5 |\mathcal{K}| - 10$, then \mathcal{K} is contained in three arithmetic progressions with the same common difference, having together no more than $v = |\mathcal{K} + \mathcal{K}| - 3 |\mathcal{K}| + 6$ terms. These best possible results confirm a recent conjecture of Freiman and cannot be sharpened by reducing the quantity v or by increasing the upper bounds for $|\mathcal{K} + \mathcal{K}|$.

1. Introduction and results

The direction of additive number theory where properties of a set are derived from known properties of its sumset is called Structure Theory of Set Addition. Freiman's fundamental result on addition of finite sets [3] describes the structure of sets of integers with small doubling property: let A be a set of integers of cardinality |A| such that the sumset $2A = A + A = \{a + a' \mid a, a' \in A\}$ has cardinality at most $\alpha |A|$. Then A is contained in a proper d-dimensional arithmetic progression $P = \{a + x_1q_1 + \dots + x_dq_d \mid 0 \le x_i < \ell_i, i = 1, 2, \dots, d\}$, with dimension $d \le [\alpha - 1]$ and length $\ell(P) = |P| = \ell_1\ell_2 \dots \ell_d \le C(\alpha)|A|$. In other words, A is a large subset of a generalized arithmetic progression. In most applications, it is essential to have a quantitative understanding of the dependence of $C(\alpha)$ on α . Using an earlier approach of Ruzsa [6] and Bilu [1], Chang obtained in [2] the best bound so far known.

Mathematics Subject Classification (2000): 11P70, 11B25, 52C99

This work deals with the following problem first raised at the talk of Freiman at the Number Theory Conference held at CIRM, Marseille, on June 1993 (see the survey [4, pp. 16] and also [5, pp. 249]). Let $K \subseteq \mathbb{Z}^d$ be a finite d-dimensional set of lattice points. Freiman asked what can be said about the *exact* structure of K, if |K+K| is very close to its minimal possible value? Can we make the result of the main theorem more precise? It is possible to obtain *exact estimates* for the constant $C(\alpha)$?

In this paper we solve the above question for the first open case d=3. In a subsequent paper we shall present an extension to the general case $d \ge 3$, which is more complicated. We assume that a finite three-dimensional set K has a doubling coefficient $\frac{|2K|}{|K|}$ less than $\frac{13}{3}$ and we give a sharp estimate for the number of lattice points in the convex hull of K:

Theorem 1.1. Let \mathcal{K} be a finite subset of \mathbb{Z}^3 of affine dimension dim $\mathcal{K}=3$.

- (a) If $|\mathcal{K} + \mathcal{K}| < \frac{13}{3} |\mathcal{K}| \frac{25}{3}$ and $|\mathcal{K}| > 12^3$, then \mathcal{K} lies on three parallel lines. (b) If \mathcal{K} lies on three parallel lines and $|\mathcal{K} + \mathcal{K}| < 5 |\mathcal{K}| - 10$, then \mathcal{K} is contained
- (b) If K lies on three parallel lines and |K+K| < 5|K| 10, then K is contained in three arithmetic progressions with the same common difference, having together no more than v = |K+K| 3|K| + 6 terms.

Let us mention that the cases $d=1, \ \mathcal{K}\subseteq\mathbb{Z}, \ |2\mathcal{K}|<3|\mathcal{K}|-3$ and $d=2, \ \mathcal{K}\subseteq\mathbb{Z}^2, \ |2\mathcal{K}|<\frac{10}{3}|\mathcal{K}|-5$ were solved earlier by Freiman, see [3], pp. 11 and pp. 28. Corresponding results for $d=2, \ \mathcal{K}\subseteq\mathbb{Z}^2, \ |2\mathcal{K}|<3.5|\mathcal{K}|-7$ were obtained in [7]; see also [9] and [8].

Acknowledgements. It is a great pleasure to thank Professor G. A. Freiman for having initiated this research. I also thank him for stimulating discussions and many valuable suggestions during the preparation of this work.

2. Definitions and preliminaries

Throughout this paper we use the following notations. \mathbb{Z} denotes the rational integers and \mathbb{N} the nonnegative elements of \mathbb{Z} . Let \mathbb{R}^d be the d-dimensional Euclidian space and \mathbb{Z}^d the additive group of integral vectors in \mathbb{R}^d . If M is a finite set, the number of its elements will be denoted by |M|. We denote by $M+N=\{x+y\,|\,x\in M,y\in N\}$ the algebraic sum of two finite sets M and N. We call 2M=M+M the sum set of M. For $x\in\mathbb{Z}^d$, we write M+x for the set $\{m+x\,|\,m\in M\}$. By arithmetic progression of k terms in a torsion-free Abelian group G, we understand a set of the form $\{a+tv\,|\,t=0,1,\ldots,k-1\}$ where $a,v\in G$ and $v\neq 0$. The affine dimension dim A of a set $A\subseteq\mathbb{R}^d$ is defined as the dimension of the smallest hyperplane containing A. We

denote by $e_0 = (0,0,0)$, $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$ the vertices of the standard simplex in \mathbb{R}^3 . A vector v will also be called a *point* and will be written in the form v = (x,y,z) where x,y,z are the coordinates of the vector with respect to the canonical basis $\{e_1, e_2, e_3\}$.

Let us recall the concept projection in the sense of Freiman [3]. Let $\{f_1, f_2, f_3\}$ be a basis of \mathbb{R}^3 and assume that $\mathcal{K} \subseteq \mathbb{R}^3$ is a finite set. Suppose that for $x \in \mathbb{R}$ and $y \in \mathbb{R}$ there are $s \geq 1$ points of \mathcal{K} having the first two coordinates equal to x and y respectively. Instead of these s points, we choose the points $xf_1 + yf_2 + jf_3$, with $0 \leq j \leq s - 1$. This process is performed for all fixed (x,y) with $s \geq 1$. The set \mathcal{K}_0 so obtained is called the projection of the set \mathcal{K} onto the plane $\mathcal{L} = \{af_1 + bf_2 \mid a \in \mathbb{R}, b \in \mathbb{R}\}$ parallel to the vector f_3 . It is obvious that $|\mathcal{K}_0| = |\mathcal{K}|$ and Theorem 1.16 from [3] states that $|\mathcal{K}_0 + \mathcal{K}_0| \leq |\mathcal{K} + \mathcal{K}|$. Actually, in the original form, Theorem 1.16 is only stated for integral vectors, but it is obviously true in the more general setting of this paragraph.

We complete Section 2 by showing that Theorem 1.1 cannot be sharpened by increasing the upper bounds for $|2\mathcal{K}|$ or by reducing the quantity v.

Example 1. Let $x \ge 3$ be an integer. Define $\mathcal{A} = \mathcal{P}_0 \cup \mathcal{P}_1 \cup \mathcal{P}_2 \cup \{e_3\}$, where $\mathcal{P}_0 = \{e_0, e_1, 2e_1, \dots, (x-1)e_1\}$, $\mathcal{P}_1 = \mathcal{P}_0 + e_2$, $\mathcal{P}_2 = \mathcal{P}_0 + 2e_2$. Then $|2\mathcal{A}| = |2\mathcal{P}_0 + \{e_0, e_2, 2e_2, 3e_2, 4e_2\}| + |(\mathcal{P}_0 \cup \mathcal{P}_1 \cup \mathcal{P}_2) + e_3| + |\{2e_3\}| = 5(2x-1) + 3x + 1 = 13x - 4$. We get that $|2\mathcal{A}| = \frac{13}{3}|\mathcal{A}| - \frac{25}{3}$ and it is obvious that \mathcal{A} cannot be covered by three parallel lines. This proves that Theorem 1.1 cannot be improved by increasing the upper bound (a) for $|2\mathcal{K}|$.

Example 2. Let us take $\mathcal{B} = \{e_0, e_3, 2e_3, \dots, (b-4)e_3, xe_3\} \cup \{e_1\} \cup \{e_2\}$, with $b = |\mathcal{B}| \geq 5$ and x > 2b - 8. Clearly, \mathcal{B} is a three-dimensional subset of \mathbb{R}^3 that lies on three parallel lines and $|2\mathcal{B}| = 5|\mathcal{B}| - 10$. Nevertheless, we cannot give an upper bound, depending only on $|\mathcal{B}|$ and $|2\mathcal{B}|$, for the number of terms of three arithmetic progressions of the same difference that cover \mathcal{B} . Indeed, any such three arithmetic progressions have at least x+3 terms and we can choose x arbitrarily large. This means that the conclusion of Theorem 1.1(b) is false, if the condition $|2\mathcal{K}| < 5|\mathcal{K}| - 10$ is not satisfied.

Example 3. Let us define $C = \{e_0, e_3, 2e_3, \dots, (c-4)e_3, xe_3\} \cup \{e_1\} \cup \{e_2\}$, with $c = |\mathcal{C}| \geq 5$ and $c - 3 \leq x < 2c - 7$. \mathcal{C} is a three-dimensional subset of \mathbb{R}^3 , \mathcal{C} lies on three parallel lines and $|2\mathcal{C}| = 3c - 3 + x < 5c - 10$. Moreover, any three arithmetic progressions of the same difference that cover \mathcal{C} have at least $x + 3 = |2\mathcal{C}| - 3c + 6$ terms. Therefore the estimate for v given in Theorem 1.1(b) is optimal.

3. Some Lemmas

We require the following lemmas. We show first that assertion (a) of Theorem 1.1 is true in a very simple case.

Lemma 3.1. Let \mathcal{K} be a finite subset of \mathbb{Z}^3 of affine dimension $\dim \mathcal{K} = 3$. Assume that there is a line ℓ such that $\mathcal{K} \setminus \ell$ lies on a plane. If $k = |\mathcal{K}| \ge 25$, then $|2\mathcal{K}| \ge \frac{13}{3}|\mathcal{K}| - \frac{25}{3}$ or \mathcal{K} lies on three parallel lines.

Proof. (I). We first assume that $\mathcal{K} \setminus \ell$ lies on a plane parallel to the line ℓ . Let us choose r parallel lines $\ell_1, \ell_2, \dots, \ell_r$ that cover \mathcal{K} with $\ell_1 = \ell$. If r = 3 we have nothing to prove. Assume $r \geq 4$ and denote $\mathcal{K}_i = \mathcal{K} \cap \ell_i$, $k_i = |\mathcal{K}_i| \geq 1$, $\bar{\mathcal{K}} = \mathcal{K} \setminus \mathcal{K}_1$ and $\bar{k} = |\bar{\mathcal{K}}|$. It is clear that \mathcal{K}_1 and $\bar{\mathcal{K}}$ lie on different parallel planes, $k = k_1 + \bar{k}$ and thus

$$|2\mathcal{K}| = |2\mathcal{K}_1| + |\mathcal{K}_1 + \bar{\mathcal{K}}| + |2\bar{\mathcal{K}}| \ge (2k_1 - 1) + \sum_{i=2}^r (k_1 + k_i - 1) + |2\bar{\mathcal{K}}|$$

$$= r(k_1 - 1) + k + |2\bar{\mathcal{K}}|.$$
(1)

Case (a). If $|2\bar{\mathcal{K}}| \geq \frac{10}{3}\bar{k} - 5$, then we get

$$|2\mathcal{K}| \ge (4k_1 - 4) + k + \left(\frac{10}{3}\bar{k} - 5\right) = \left(\frac{13}{3}k - \frac{25}{3}\right) + \frac{2}{3}(k_1 - 1) \ge \frac{13}{3}k - \frac{25}{3}.$$

Case (b). If $\bar{k} \leq 10$, then using $k \geq 25$ we get

$$|2\mathcal{K}| \ge (4k_1 - 4) + k + (2\bar{k} - 1) = 5k - 5 - 2\bar{k} \ge 5k - 25 \ge \frac{13}{3}k - \frac{25}{3}.$$

Case (c). If $\bar{k} \ge 11$ and $|2\bar{\mathcal{K}}| < \frac{10}{3}\bar{k} - 5$, then Theorem 1.17 from [3, pp. 28], implies that $\bar{\mathcal{K}}$ can be covered by two parallel lines γ_1 and γ_2 . If $k_1 = 1$ or if γ_1 and γ_2 are parallel to ℓ , then the set \mathcal{K} itself lies on three parallel lines.

Therefore we may assume that γ_1 and γ_2 are not parallel to ℓ and $k_1 \geq 2$. It follows that

(2)
$$1 \le k_i \le 2$$
 for every $2 \le i \le r$, $r - 1 \le \bar{k} = k_2 + \dots + k_r \le 2r - 2$.

We distinguish two subcases depending on $\dim \bar{\mathcal{K}}$.

(c1). If $\dim \bar{\mathcal{K}} = 1$ and $k_1 = 2$, then \mathcal{K} lies on three parallel lines. If $\dim \bar{\mathcal{K}} = 1$ and $k_1 \geq 3$, then $|2\mathcal{K}| \geq |2\mathcal{K}_1| + |\mathcal{K}_1 + \bar{\mathcal{K}}| + |2\bar{\mathcal{K}}| \geq (2k_1 - 1) + k_1\bar{k} + (2\bar{k} - 1) = (k_1 - 3)(\bar{k} - 3) + 5(k_1 + \bar{k}) - 11 \geq 5k - 11 \geq \frac{13}{3}k - \frac{25}{3}$.

(c2). If $\dim \overline{\mathcal{K}} = 2$, then $|2\overline{\mathcal{K}}| \ge 3\overline{k} - 3$ (see [3, pp. 24], inequality (1.14.1)). Inequality (2) implies $r \ge \frac{\overline{k}}{2} + 1$. Using $r \ge 4$, $k_1 \ge 2$ and inequality (1) we get

$$|2\mathcal{K}| \ge r(k_1 - 1) + k + |2\bar{\mathcal{K}}| \ge r(k_1 - 1) + k + (3\bar{k} - 3)$$

$$= (r - 4)(k_1 - 2) + r + (4k_1 - 8) + k + (3\bar{k} - 3)$$

$$\ge \frac{\bar{k}}{2} + 1 + (4k_1 - 8) + k + (3\bar{k} - 3) = 4.5\bar{k} + 5k_1 - 10 > \frac{13}{3}k - \frac{25}{3}.$$

- (II). We finish the proof of Lemma 3.1 by examining the case when the line ℓ intersects the plane \mathcal{P} that contains $\mathcal{K} \setminus \ell$. Without loss of generality, we may assume that
- (i) the plane $\mathcal{P} = (z=0)$,
- (ii) the set $\bar{\mathcal{K}} = \mathcal{K} \cap \mathcal{P}$ satisfies $\bar{k} = |\bar{\mathcal{K}}| \ge 3$,
- (iii) the set $\bar{\mathcal{K}} = \mathcal{K} \setminus \mathcal{P} = \{z_1 e_3, \dots, z_t e_3\} \subseteq \ell \text{ satisfies } t = |\bar{\mathcal{K}}| \ge 2.$

(Indeed, if $\bar{k} \leq 2$, then K lies on three parallel lines and if t=1 then we may use case (I).) We can easily prove that

$$|2\mathcal{K}| \ge |2\bar{\mathcal{K}}| + \sum_{j=1}^{t} |\bar{\mathcal{K}} + z_{j}e_{3}| + |(2\bar{\bar{\mathcal{K}}}) \setminus \{e_{0}, z_{1}e_{3}, \dots, z_{t}e_{3}\}|$$

$$(3) \qquad \ge |2\bar{\mathcal{K}}| + t|\bar{\mathcal{K}}| + (2t-1) - (t+1) = |2\bar{\mathcal{K}}| + t\bar{k} + (t-2).$$

If t=2 and $\dim \bar{\mathcal{K}}=1$, then \mathcal{K} lies on three parallel lines. If t=2 and $\dim \bar{\mathcal{K}}=2$, then again by [3], inequality $(1.14.1), |2\mathcal{K}| \geq (3\bar{k}-3)+2\bar{k}=5\bar{k}-3=5k-13>\frac{13}{3}k-\frac{25}{3}$. It will be enough to consider only the case $t\geq 3$. If $t\geq 3$ and $\bar{k}\geq 4$, we use (3) and get

$$|2\mathcal{K}| \ge |2\bar{\mathcal{K}}| + t|\bar{\mathcal{K}}| + (t-2) \ge (2\bar{k} - 1) + t\bar{k} + (t-2)$$

= $(t-3)(\bar{k} - 4) + 5(\bar{k} + t) - 15 \ge 5k - 15 > \frac{13}{3}k - \frac{25}{3}$.

Assume $t \ge 3$ and $\bar{k} = 3$. If one of the points of $\bar{\mathcal{K}}$ lies on ℓ , then \mathcal{K} lies on three parallel lines. If $\bar{\mathcal{K}} \cap \ell = \emptyset$, then

$$|2\mathcal{K}| \ge |2\bar{\mathcal{K}}| + |\bar{\mathcal{K}} + \bar{\mathcal{K}}| + |2\bar{\mathcal{K}}| \ge (2t-1) + 3t + (2\bar{k} - 1)$$

$$= (2t-1) + 3t + 5 = 5t + 4 = 5k - 11 > \frac{13}{3}k - \frac{25}{3}.$$

The following result generalize inequalities (3) and (4) from [3, pp. 25].

Lemma 3.2. Let $\mathcal{K} \subseteq \mathbb{Z}^3$ be a finite set of affine dimension $d = \dim \mathcal{K} = 3$. Assume that there are r parallel lines ℓ_1, \ldots, ℓ_r such that $|\mathcal{K} \cap \ell_i| = k_i \ge 1$ for every $1 \le i \le r$ and $k = |\mathcal{K}| = k_1 + \cdots + k_r$. If $k_{\max} = \max\{k_1, \ldots, k_r\}$, then

(a)
$$|\mathcal{K} + \mathcal{K}| \ge \left(5 - \frac{2}{r-1}\right) |\mathcal{K}| - (2r+1) + \frac{2}{r-1};$$

(b) $|\mathcal{K} + \mathcal{K}| \ge (3|\mathcal{K}| - 3) + (r-2)(k_{\text{max}} - 1).$

Proof. (a). Using inequality (1.14.1), from [3, pp. 24] and dim $\mathcal{K}=3$ we get $|2\mathcal{K}| \ge 4|\mathcal{K}| - 6$.

If $k \le 2r - 1$, this inequality implies

$$|\mathcal{K} + \mathcal{K}| \ge \left(5 - \frac{2}{r-1}\right)|\mathcal{K}| - (2r+1) + \frac{2}{r-1}.$$

Therefore, we may assume that $k \ge 2r$ and $k_j \ge 2$, for some $1 \le j \le r$. We *claim* that there is a three-dimensional set $\mathcal{T} \subseteq \mathbb{N}^3$ such that:

- (i) $|\mathcal{T}| = |\mathcal{K}|$ and $|2\mathcal{T}| \le |2\mathcal{K}|$.
- (ii) \mathcal{T} lies on exactly r lines $\delta_1, \ldots, \delta_r$ parallel to e_3 .
- (iii) The set $T \cap (\delta_1 \cup \cdots \cup \delta_{r-1})$ is two-dimensional.

Assertion (a) follows easily from (i)–(iii). Indeed, we split the set \mathcal{T} into two subsets $\mathcal{T}' = \mathcal{T} \cap (\delta_1 \cup \cdots \cup \delta_{r-1})$ and $\mathcal{T}'' = \mathcal{T} \setminus \mathcal{T}' = \mathcal{T} \cap \delta_r$. The set \mathcal{T}' lies on a plane on exactly r-1 parallel lines; we use inequality (1.15.4) from [3, pp. 25], and obtain $|2\mathcal{T}'| \geq (4 - \frac{2}{r-1})|\mathcal{T}'| - (2r-3)$. Moreover,

$$|\mathcal{T}' + \mathcal{T}''| = \sum_{i=1}^{r-1} |\mathcal{T}'' + (\mathcal{T} \cap \delta_i)| \ge \sum_{i=1}^{r-1} (|\mathcal{T}''| + |\mathcal{T} \cap \delta_i| - 1) = |\mathcal{T}'| + (r-1)(|\mathcal{T}''| - 1).$$

We conclude that

(4)
$$|\mathcal{T}' + \mathcal{T}''| + |2\mathcal{T}''| \ge |\mathcal{T}'| + (r-1)(|\mathcal{T}''| - 1) + (2|\mathcal{T}''| - 1) = |\mathcal{T}| + r(|\mathcal{T}''| - 1)$$

and thus

$$\begin{aligned} |2\mathcal{K}| &\geq |2\mathcal{T}| = |2\mathcal{T}'| + (|\mathcal{T}' + \mathcal{T}''| + |2\mathcal{T}''|) \\ &\geq \left(\left(4 - \frac{2}{r-1}\right)|\mathcal{T}'| - (2r-3)\right) + (|\mathcal{T}| + r(|\mathcal{T}''| - 1)) \\ &= \left(\left(5 - \frac{2}{r-1}\right)|\mathcal{T}| - (2r+1) + \frac{2}{r-1}\right) + (r^2 - 5r + 6)\frac{|\mathcal{T}''| - 1}{r-1} \\ &\geq \left(5 - \frac{2}{r-1}\right)|\mathcal{K}| - (2r+1) + \frac{2}{r-1}. \end{aligned}$$

Let us check now assertions (i)–(iii). After an affine isomorphism of \mathbb{R}^3 , we may assume that the lines ℓ_1, \ldots, ℓ_r that cover \mathcal{K} are parallel to the vector e_3 . Denote by \mathcal{L} the projection of \mathcal{K} onto the plane (z=0) using a projection parallel to the vector e_3 . Note that $\dim \mathcal{K} = 3$ implies that $\mathcal{L} \cap (z=0)$ is a

two-dimensional set. Moreover, using a suitable affine isomorphism of \mathbb{R}^3 we may assume without loss of generality that the set $\mathcal{L} \cap (z=0)$ lies in the first quadrant $\{(x,y,0) \mid x \geq 0, y \geq 0\}$ and contains the points e_0, e_1 and e_2 . A projection of \mathcal{L} onto the plane (x=0) parallel to e_1 followed by a projection onto the plane (y=0) parallel to e_2 , maps \mathcal{L} onto a three dimensional set $\mathcal{M} \subseteq \mathbb{R}^3$ that lies on r lines parallel to e_3 . It is clear that for every point (x,y,z) of \mathcal{M} the coordinates x,y and z are non-negative integers, $|\mathcal{M}|=|\mathcal{K}|$ and $|2\mathcal{M}| \leq |2\mathcal{K}|$; thus \mathcal{M} satisfies assertions (i)–(ii) of our claim. We prove now that a finite number of additional projections will map $\mathcal M$ onto a set $\mathcal T$ that satisfies also part (iii) of our claim. The set $\mathcal{M} \cap (z=0)$ lies in the first quadrant $\{(x,y,0) \mid x \geq 0, y \geq 0\}$ and let us cover it by $n \geq 2$ lines parallel to the vector e_1 . Choose $w = (a,0,0) \in \mathcal{M}$ such that $\mathcal{M} \cap \{te_1 \mid t \in \mathbb{R}\}$ lies between the points e_0 and w. Let \mathcal{M}' denote the projection of \mathcal{M} onto the plane (y=0) parallel to e_2-w . It is obvious that the intersection of \mathcal{M}' with the plane (z=0) still contains the points $\{e_0,e_1,e_2\}$ and lies in the first quadrant. Note that if $n \geq 3$, then the new set \mathcal{M}' can be covered by n' planes, $2 \le n' < n$, parallel to the plane (y = 0) and if n = 2, then \mathcal{M}' satisfies assertion (iii). After a finite number of projections of this type we will obtain the desired set \mathcal{T} .

(b). The proof of inequality (b) of Lemma 3.2 is similar to the proof of (a). In order to estimate $|2\mathcal{T}'|$ we note that $k_{\text{max}} = \max\{k_1, k_2, \dots, k_r\} = |\mathcal{T} \cap \delta_1|$, where δ_1 denotes the line passing through points e_0 and e_3 . We use inequality (1.15.3) from [3, pp. 25]. If t_i denotes $|\mathcal{T} \cap \delta_i|$, then $|2\mathcal{T}'| \geq 2|\mathcal{T}'| + (t_1 + t_{r-1})(r-2) - (2r-3)$. Inequality (b) follows using (4) and from

$$\begin{split} |2\mathcal{K}| &\geq |2\mathcal{T}| = |2\mathcal{T}'| + \left(|\mathcal{T}' + \mathcal{T}''| + |2\mathcal{T}''|\right) \\ &\geq \left(2|\mathcal{T}'| + (t_1 + t_{r-1})(r-2) - (2r-3)\right) + \left(|\mathcal{T}| + r|\mathcal{T}''| - r\right) \\ &= 3|\mathcal{T}| + (r-2)|\mathcal{T}''| + (t_1 + t_{r-1})(r-2) - 3r + 3 \\ &= (3|\mathcal{T}| - 3) + (t_1 + t_{r-1} + t_r - 3)(r-2) \\ &\geq (3|\mathcal{T}| - 3) + (k_{\max} - 1)(r-2) = (3k-3) + (k_{\max} - 1)(r-2). \quad \blacksquare \end{split}$$

As a direct corollary of Lemma 3.2, we obtain the following:

Lemma 3.3. Let $\mathcal{K} \subseteq \mathbb{Z}^3$ be a finite set of affine dimension $\dim \mathcal{K} = 3$. Assume that $|\mathcal{K} + \mathcal{K}| < \frac{13}{3} |\mathcal{K}| - \frac{25}{3}$. If there is a line ℓ such that $|\mathcal{K} \cap \ell| \ge 5$, then \mathcal{K} lies on three parallel lines.

Proof. The set \mathcal{K} is decomposable into $r \geq 3$ subsets $\mathcal{K}_1, \ldots, \mathcal{K}_r$ which lie on r lines ℓ_1, \ldots, ℓ_r parallel to ℓ . We have $k_{\max} = \max\{|\mathcal{K} \cap \ell_i| : 1 \leq i \leq r\} \geq 5$.

(a). If $4 \le r \le \frac{k-1}{3} + 1$, then assertion (a) of Lemma 3.2 implies that

$$|2\mathcal{K}| \ge \left(5 - \frac{2}{r-1}\right)|\mathcal{K}| - (2r+1) + \frac{2}{r-1} \ge \frac{13}{3}|\mathcal{K}| - \frac{25}{3},$$

which contradicts the small doubling property of \mathcal{K} .

(b). If $r > \frac{k-1}{3} + 1$, then assertion (b) of Lemma 3.2 implies that

$$|2\mathcal{K}| \ge (3k-3) + (r-2)(k_{\text{max}} - 1) \ge (3k-3) + 4(r-2)$$

> $(3k-3) + 4\left(\frac{k-1}{3} - 1\right) = \frac{13}{3}k - \frac{25}{3}$,

which again contradicts the small doubling property of K.

It follows that r=3 and this completes the proof of Lemma 3.3.

The next result provides the inductive step in the proof of Lemma 3.5.

Lemma 3.4. Let \mathcal{K} be a finite subset of \mathbb{Z}^3 of affine dimension $\dim \mathcal{K} = 3$ and having the small doubling property $|\mathcal{K} + \mathcal{K}| < \frac{13}{3} |\mathcal{K}| - \frac{25}{3}$. Then

- (a) K lies on three parallel lines, or
- (b) there exists a proper subset $\mathcal{K}^* \subseteq \mathcal{K}$ such that $\dim \mathcal{K}^* = 3$, $|\mathcal{K}^*| \ge |\mathcal{K}| 4$ and $|2\mathcal{K}| \ge |2\mathcal{K}^*| + 4.5(|\mathcal{K}| |\mathcal{K}^*|)$, or
- (c) $|\mathcal{K}| \leq 4^3$.

Proof. Let \mathcal{C} be the convex hull of \mathcal{K} . Then \mathcal{C} is a polyhedron whose vertices are all contained in \mathcal{K} . We will use the following notations: if A is an arbitrary vertex of \mathcal{C} we denote by E_1^A, \ldots, E_d^A the edges of \mathcal{C} that meet at A. \mathcal{C} is a three dimensional polyhedron and so the degree of A is $d = \deg(A) \geq 3$. For every $i, 1 \leq i \leq d$, choose $A_i \in \mathcal{K}$ on the edge E_i^A such that there is no other point of \mathcal{K} between A and A_i . We will say that A_1, \ldots, A_d are the neighbours of A in \mathcal{C} .

Case A. If for some vertex A of C we have $\deg(A) \geq 4$, then the removal of A from K reduces the cardinality of 2K by at least 5. Indeed, if $K^* = K \setminus \{A\}$, then

$$|2\mathcal{K}| \ge |2\mathcal{K}^*| + |\{A + A, A + A_1, \dots, A + A_d\}| \ge |2\mathcal{K}^*| + d + 1$$

$$\ge |2\mathcal{K}^*| + 5 = |2\mathcal{K}^*| + 5(|\mathcal{K}| - |\mathcal{K}^*|) > |2\mathcal{K}^*| + 4.5(|\mathcal{K}| - |\mathcal{K}^*|).$$

Case B. We assume that for every vertex A of \mathcal{C} we have $\deg(A) = 3$. If there is a vertex B of \mathcal{C} such that the set \mathcal{K} does not lie in the lattice λ generated by the points B, B_1, B_2, B_3 , then there is $B^* \in \mathcal{K} \setminus \lambda$,

$$B^* = \alpha(B_1 - B) + \beta(B_2 - B) + \gamma(B_3 - B),$$

for which at least one of the three coordinates α , β and γ is not an integer. Moreover, we may assume that we choose $B^* \in \mathcal{K} \setminus \lambda$ in such a way that there is no other vector $B' \neq B$ in $\mathcal{K} \setminus \lambda$, with coordinates α' , β' , γ' satisfying $\alpha' \leq \alpha$, $\beta' \leq \beta$ and $\gamma' \leq \gamma$. Then 2B, $B + B_1$, $B + B_2$, $B + B_3$ and $B + B^*$ are in $2\mathcal{K}$, but not in $2(\mathcal{K} \setminus \{B\})$. Therefore, if we put $\mathcal{K}^* = \mathcal{K} \setminus \{B\}$, then

$$|2\mathcal{K}| \ge |2\mathcal{K}^*| + 5 > |2\mathcal{K}^*| + 4.5(|\mathcal{K}| - |\mathcal{K}^*|).$$

Case C. We assume that for every vertex A of C we have $\deg(A)=3$ and \mathcal{K} lies in the lattice generated by A and his neighbours A_1, A_2, A_3 . Choose an edge AB of the convex hull of \mathcal{K} . Let $\{A_1, A_2, A_3\}$ and $\{B_1, B_2, B_3\}$ be the neighbours of A and B, respectively. We may assume that

- (i) A_3 and B_3 lie on the edge AB;
- (ii) the points A, B, A_i, B_i lie on the same face of C, for i=1 and i=2;
- (iii) $A = e_0$ and $A_i A = e_i$, for i = 1, 2, 3;
- (iv) K lies in $\mathbb{Z}^3 \cap \{(x, y, z) | x \ge 0, y \ge 0, z \ge 0\}.$

If $\mathcal{M} = P + \{m_1e_3, \dots, m_te_3\}$ is a set lying on a line parallel to e_3 , let us define it's length by $l(\mathcal{M}) = \max\{m_1, \dots, m_t\} - \min\{m_1, \dots, m_t\}$. We denote

$$\mathcal{K}_A = \mathcal{K} \cap \{te_3 \mid t \ge 0\}, \qquad k_0 = |\mathcal{K}_A| \ge 2,$$

 $\mathcal{K}_{A_i} = \mathcal{K} \cap \{A_i + te_3 \mid t \ge 0\}, \ k_i = |\mathcal{K}_{A_i}|, \ i = 1, 2.$

We distinguish several subcases, but first we will show that $B_i \in \mathcal{K}_{A_i}$ for i=1,2. Indeed, if $B_1 \notin \mathcal{K}_{A_1}$ (or if $B_2 \notin \mathcal{K}_{A_2}$), then A_1 (or A_2) does not lie in the lattice generated by $\{B, B_1, B_2, B_3\}$ and this contradicts the assumptions of Case C for the vertex B.

Case C1. Assume $k_1 = k_2 = 1$. This is equivalent to $B_1 = A_1$ and $B_2 = A_2$; it follows that \mathcal{K} lies on three parallel lines $\ell_0 = \{te_3 \mid t \geq 0\}$, $\ell_1 = \{A_1 + te_3 \mid t \geq 0\}$ and $\ell_2 = \{A_2 + te_3 \mid t \geq 0\}$.

Case C2. If $k_0 \ge 5$, then Lemma 3.3 implies that K lies on 3 parallel lines.

Case C3. We assume that $\max\{k_1, k_2\} \geq 2$, $k_0 \leq 4$ and \mathcal{K}_A is not an arithmetic progression. The removal of \mathcal{K}_A from \mathcal{K} reduces the cardinality of $2\mathcal{K}$ by at least $4.5|\mathcal{K}_A|$. Indeed, \mathcal{K}_A is not an arithmetic progression implies (i) $|2\mathcal{K}_A| \geq 2k_0$ and (ii) $|\mathcal{K}_A + \mathcal{K}_j| \geq k_0 + k_j$, if $k_j \geq 2$, for j = 1 or j = 2. Denote $\mathcal{K}^* = \mathcal{K} \setminus \mathcal{K}_A$. Using $k_0 \leq 4$ we get

$$|2\mathcal{K}| \ge |2\mathcal{K}^*| + |2\mathcal{K}_A| + |\mathcal{K}_A + (\mathcal{K}_{A_1} \cup \mathcal{K}_{A_2})|$$

$$\ge |2\mathcal{K}^*| + 2k_0 + (2k_0 + \max\{k_1, k_2\})$$

$$\ge |2\mathcal{K}^*| + (4k_0 + 2) \ge |2\mathcal{K}^*| + 4.5k_0.$$

Case C4. We assume that $\max\{k_1, k_2\} \geq 2$, $k_0 \leq 4$, \mathcal{K}_A is an arithmetic progression and $\max\{l(\mathcal{K}_{A_1}), l(\mathcal{K}_{A_2})\} > l(\mathcal{K}_A)$. It is obvious that $|\mathcal{K}_A + (\mathcal{K}_{A_1} \cup \mathcal{K}_{A_2})| \geq 3k_0$ and thus the removal of \mathcal{K}_A from \mathcal{K} reduces the cardinality of $2\mathcal{K}$ by at least $4.5|\mathcal{K}_A|$. Indeed, $\mathcal{K}^* = \mathcal{K} \setminus \mathcal{K}_A$ satisfies

$$|2\mathcal{K}| \ge |2\mathcal{K}^*| + |2\mathcal{K}_A| + |\mathcal{K}_A| + (\mathcal{K}_{A_1} \cup \mathcal{K}_{A_2})|$$

$$\ge |2\mathcal{K}^*| + (2k_0 - 1) + 3k_0 = |2\mathcal{K}^*| + (5k_0 - 1) \ge |2\mathcal{K}^*| + 4.5k_0.$$

Case C5. We assume that \mathcal{K}_A is an arithmetic progression, $k_0 \leq 4$ and $\max\{l(\mathcal{K}_{A_1}), l(\mathcal{K}_{A_2})\} \leq l(\mathcal{K}_A)$. In this case, $l(\mathcal{K}_A) \leq 3$ and therefore \mathcal{K} lies between two parallel planes (z=0) and (z=3).

We complete the proof of Lemma 3.4 without difficulty; in cases A, B, C3 and C4 we proved that there is a proper subset $\mathcal{K}^* \subseteq \mathcal{K}$ such that $|\mathcal{K}^*| \ge |\mathcal{K}| - 4$ and $|2\mathcal{K}| \ge |2\mathcal{K}^*| + 4.5(|\mathcal{K}| - |\mathcal{K}^*|)$. Moreover, note that $\mathcal{K} \setminus \mathcal{K}^*$ is a vertex or lies on an edge of the convex hull of \mathcal{K} . If $\dim \mathcal{K}^* = 3$, then assertion (b) of Lemma 3.4 is true. If $\dim \mathcal{K}^* \le 2$, we may use Lemma 3.1: inequality $|2\mathcal{K}| < \frac{13}{3}k - \frac{25}{3}$ implies that k < 25 or \mathcal{K} lies on three parallel lines. In cases C1 and C2, the set \mathcal{K} lies on three parallel lines. If case C5 is true, then we continue the analysis of cases A, B and C for the edges $\mathcal{K} \cap (x=0) \cap (z=0)$ and $\mathcal{K} \cap (y=0) \cap (z=0)$. If assertion (a) and assertion (b) don't hold, we obtain that $|\mathcal{K}| < 25$ or \mathcal{K} lies inside a bounded parallelepiped $0 \le x, y, z \le 3$ and so $|\mathcal{K}| \le 4^3$. This completes the proof of Lemma 3.4.

Lemma 3.5. If K is a finite three-dimensional subset of \mathbb{Z}^3 with small doubling property $|\mathcal{K}+\mathcal{K}| < \frac{13}{3}|\mathcal{K}| - \frac{25}{3}$ and if $|\mathcal{K}| > 12^3$, then there exists a line ℓ such that $|\ell \cap \mathcal{K}| \ge \frac{1}{81}|\mathcal{K}|$.

Proof. Let \mathcal{K}' be a minimal subset of \mathcal{K} satisfying

(5)
$$\dim \mathcal{K}' = 3$$
, $|2\mathcal{K}'| \le |2\mathcal{K}| - 4.5(|\mathcal{K}| - |\mathcal{K}'|)$ and $|\mathcal{K}'| \ge \frac{1}{27}|\mathcal{K}|$.

 \mathcal{K}' exists, because \mathcal{K} itself satisfies conditions (5). Put $k = |\mathcal{K}|$ and $k' = |\mathcal{K}'|$. We will show below that \mathcal{K}' lies on three parallel lines; this implies that there exists a line $\ell \subseteq \mathbb{R}^3$ such that $|\mathcal{K}' \cap \ell| \ge \frac{1}{2} |\mathcal{K}'|$ and thus

$$|\mathcal{K} \cap \ell| \ge |\mathcal{K}' \cap \ell| \ge \frac{1}{3}|\mathcal{K}'| \ge \frac{1}{3}\frac{1}{27}|\mathcal{K}| = \frac{1}{81}|\mathcal{K}|.$$

This concludes the proof of Lemma 3.5. It remains to show that \mathcal{K}' lies on three parallel lines. Note that \mathcal{K}' satisfies the small doubling property

$$|2\mathcal{K}'| \le |2\mathcal{K}| - 4.5(k - k') < \left(\frac{13}{3}k - \frac{25}{3}\right) - 4.5(k - k') \le \frac{13}{3}k' - \frac{25}{3}.$$

Moreover, $|\mathcal{K}'| \ge \frac{1}{27}k > \frac{1}{27}12^3 = 4^3$ and dim $\mathcal{K}' = 3$. By Lemma 3.4, we get that

- (a) \mathcal{K}' on three parallel lines, or
- (b) there exists a proper subset $\mathcal{K}'' \subseteq \mathcal{K}'$ such that $\dim \mathcal{K}'' = 3$, $k'' = |\mathcal{K}''| \ge k' 4$ and $|2\mathcal{K}''| \le |2\mathcal{K}'| 4.5(k' k'')$.

We complete the proof by showing that assertion (b) is false. Indeed, if we assume that (b) is true, then

$$|2\mathcal{K}''| \le |2\mathcal{K}'| - 4.5(k' - k'') \le (|2\mathcal{K}| - 4.5(k - k')) - 4.5(k' - k'')$$
$$= |2\mathcal{K}| - 4.5(k - k'').$$

Therefore we should have $k'' < \frac{1}{27}k$, otherwise there would be a contradiction to the minimal choice of \mathcal{K}' . Note that $\frac{1}{27}k \le k' \le k'' + 4 < \frac{1}{27}k + 4$. We obtain $|2\mathcal{K}'| \le |2\mathcal{K}| - 4.5(k - k') < \left(\frac{13}{3}k - \frac{25}{3}\right) - 4.5k + 4.5k' < \left(\frac{13}{3}k - \frac{25}{3}\right) - 4.5k + 4.5\left(\frac{k}{27} + 4\right) = \frac{29}{3}$. Using once again inequality (1.14.1), from [3, pp. 24], we get the estimate $|2\mathcal{K}'| \ge 4k' - 6 \ge 4\frac{k}{27} - 6$ and obtain $k < \frac{423}{4}$. This contradicts the assumption $k > 12^3$ and completes the proof of Lemma 3.5.

4. Proof of Theorem 1.1

Proof of (a). Assume that $k = |\mathcal{K}| > 12^3$. In view of Lemma 3.5, we may choose a line $\ell \subseteq \mathbb{R}^3$ such that $|\ell \cap \mathcal{K}| \ge \frac{1}{81}k$. Let us cover the set \mathcal{K} by r lines ℓ_1, \ldots, ℓ_r parallel to ℓ . If $r \le 3$, we have nothing to prove. It remains to show that $r \ge 4$ contradicts our hypothesis concerning the sumset of \mathcal{K} . It is clear that $k_{\max} = \max\{|\ell_1 \cap \mathcal{K}|, \ldots, |\ell_r \cap \mathcal{K}|\} \ge \frac{1}{81}k$. Put $\delta = \frac{1}{81}$. Using Lemma 3.2 part (b), we get $|2\mathcal{K}| \ge (3k-3) + (r-2)(k_{\max}-1) \ge (3k-3) + (r-2)(\delta k-1)$. Note that $k > 12^3 > \frac{2}{\delta}$ and therefore $\delta k - 1 > \frac{1}{2}\delta k > 0$. Using the small doubling property $|2\mathcal{K}| < \frac{13}{3}k - \frac{25}{3}$, we obtain $\frac{13}{3}k - \frac{25}{3} > |2\mathcal{K}| \ge (3k-3) + (r-2)(\delta k-1)$ and thus

$$r \le 2 + \frac{|2\mathcal{K}| - (3k - 3)}{\delta k - 1} < 2 + \frac{\frac{4}{3}k - \frac{16}{3}}{\delta k - 1} < 2 + \frac{\frac{4}{3}k}{\frac{1}{2}\delta k} = 2 + \frac{8}{3\delta} < 1 + \frac{k - 1}{3}.$$

We obtained that $4 \le r \le 1 + \frac{k-1}{3}$. In view of Lemma 3.2(a), we get $|2\mathcal{K}| \ge (5 - \frac{2}{r-1})|\mathcal{K}| - (2r+1) + \frac{2}{r-1} \ge \frac{13}{3}k - \frac{25}{3}$, which contradicts the small doubling property of \mathcal{K} . This completes the proof of Theorem 1.1(a).

Proof of (b). After a coordinate change, we may assume without loss of generality that

- (i) \mathcal{K} lies on three lines ℓ_0, ℓ_1, ℓ_2 parallel to e_3 and $e_i \in \mathcal{K}_i = \ell_i \cap \mathcal{K}$, $0 \le i \le 2$;
- (ii) for every $0 \le i \le 2$, there exists a set K_i of nonnegative integers such that $\mathcal{K}_i = \{e_i + ze_3 \mid z \in K_i\}$;

(iii) the greatest common divisor of $K_1 \cup K_2 \cup K_3$ is equal to one.

If $l(K_i) = \max(K_i) - \min(K_i)$ denotes the length of K_i , it is enough to prove that the small doubling property $|2\mathcal{K}| < 5|\mathcal{K}| - 10$ implies

$$l(K_0) + l(K_1) + l(K_2) \le |2\mathcal{K}| - 3|\mathcal{K}| + 3.$$

Denote by \mathcal{P} the projection of \mathcal{K} onto the plane (y=0) parallel to the vector $w = \max(K_0)e_3 - e_2$. Note that \mathcal{P} is a three dimensional set that lies on ℓ_0 , ℓ_1 and ℓ_2 , $\mathcal{P} \cap \ell_2 = \{e_2\}$ and $\mathcal{P} \setminus \{e_2\} \subseteq (y=0)$. We shall use the following notation. For every $0 \le i \le 2$ choose a set $P_i \subset \mathbb{Z}$ such that $\mathcal{P} \cap \ell_i = \{e_i + ze_3 \mid z \in P_i\}$ and denote the length of P_i by $l(P_i) = \max(P_i) - \min(P_i)$. It is clear that

$$l(P_0) = l(K_0) + l(K_2), \quad l(P_1) = l(K_1) \text{ and } l(P_2) = 0.$$

We claim that the 2 dimensional set $\mathcal{P}^* = \mathcal{P} \setminus \{e_2\}$ satisfies $|2\mathcal{P}^*| < 4|\mathcal{P}^*| - 6$. Indeed, in view of (1.16.1), [3, pp. 27], we have $|2\mathcal{K}| \ge |2\mathcal{P}|$ and $|\mathcal{K}| = |\mathcal{P}|$; it follows that the set \mathcal{P}^* satisfies

$$|\mathcal{P}^*| = |\mathcal{P}| - 1 = |\mathcal{K}| - 1, \quad |2\mathcal{P}| = |2\mathcal{P}^*| + |\mathcal{P}^*| + 1 = |2\mathcal{P}^*| + |\mathcal{K}|$$

and therefore

$$|2\mathcal{P}^*| = |2\mathcal{P}| - |\mathcal{K}| \le |2\mathcal{K}| - |\mathcal{K}| < 4|\mathcal{K}| - 10 = 4|\mathcal{P}| - 10 = 4|\mathcal{P}^*| - 6.$$

Assertion (iii) implies that the greatest common divisor of $P_0 \cup P_1$ is also equal to one. We may use now Theorem B from [8] and obtain $l(P_0)+l(P_1) \le |2\mathcal{P}^*|-2|\mathcal{P}^*|+1$. Using $l(P_0)+l(P_1)=l(K_0)+l(K_1)+l(K_2)$, $|2\mathcal{P}^*| \le |2\mathcal{K}|-|\mathcal{K}|$ and $|\mathcal{P}^*|=|\mathcal{P}|-1=|\mathcal{K}|-1$ we get

$$l(K_0) + l(K_1) + l(K_2) \le (|2\mathcal{K}| - |\mathcal{K}|) - 2|\mathcal{P}^*| + 1 = |2\mathcal{K}| - 3|\mathcal{K}| + 3.$$

This completes the proof of Theorem 1.1(b).

References

- [1] Y. Bilu: Structure of sets with small sumsets, Astérisque 258 (1999), 77–108.
- [2] M. Chang: A polynomial bound in Freiman's theorem, Duke Math. J. 113 (2002), 399-419.
- [3] G. A. Freiman: Foundations of a Structural Theory of Set Addition, Transl. of Math. Monographs, 37, A.M.S., Providence, R.I., 1973.
- [4] G. A. Freiman: Structure Theory of Set Addition, Astérisque 258 (1999), 1–33.
- [5] G. A. Freiman: Structure Theory of Set Addition, II. Results and Problems; in: *P. Erdős and his Mathematics*, I, Budapest, 2002, pp. 243–260.

- [6] I. Z. Ruzsa: Generalized arithmetical progressions and sumsets, *Acta Math. Hungar*. **65** (1994), 379–388.
- [7] Y. V. Stanchescu: On the structure of sets of lattice points in the plane with a small doubling property, *Astérisque* **258** (1999), 217–240.
- [8] Y. V. Stanchescu: On the structure of sets with small doubling property on the plane (I), *Acta Arithmetica* **LXXXIII.2** (1998), 127–141.
- [9] Y. V. Stanchescu: On the simplest inverse problem for sums of sets in several dimensions, Combinatorica 18(1) (1998), 139–149.

Yonutz V. Stanchescu

Afeka Academic College 218 Bney Efraim Tel Aviv 69107 Israel yonis@afeka.ac.il